Оцинковка — популярный метод защиты автомобиля от коррозии
Autoremonty.ru

АВТОМОБИЛЬНЫЙ ПОРТАЛ

Оцинковка — популярный метод защиты автомобиля от коррозии

Оцинковка: мифы и реальность

Анатомия авто

У автомобилей Peugeot и Citroen защита кузова цинком — полная, двусторонняя, снаружи и внутри. Оцинкован он электроосаждением, методом катафореза. Оцинковка — самый популярный метод защиты автомобиля от коррозии. Более эффективной технологии защиты кузова от разрушения в автомобильной промышленности просто не существует. Однако даже авторитетные автоСМИ умудряются публиковать про «оцинковку» настолько фантастическую чушь, что удивляешься – учились ли эти люди в школе вообще. Хуже, что на этот бред «ведутся» доверчивые читатели. Поговорим о том, чем является «оцинковка кузова» на самом деле, чтобы Ваш выбор был аргументированным и правильным

Как защитить автомобиль от коррозии

А зачем вообще цинковать, а не лудить или меднить

Автомобильная кузовная сталь — сложный и деликатный сплав! Он не имеет ничего общего (кроме наличия железа и углерода), например, с «кровельной жестью». Этот сплав обязан идеально отвечать множеству особых, часто — взаимоисключающих, требований. Поэтому его состав, химическая и термообработка — всегда компромисс.

Не ржавеет только нержавеющая сталь (например: 12Х18Н10Т) и 100% чистое железо (получить его возможно только в космосе). Всё остальное, где присутствует железо — ржавеет, то есть — естественно окисляется, ибо «Феррум» (Fe, железо) — весьма активный химический элемент.

Автомобиль можно создать и из «нержавейки», но в этом случае его кузов будет чудовищно дорогим и ужасно нетехнологичным. Пример единственный – это DeLorean DMC 12, который стал легендой благодаря сериалу «Назад в будущее». Ирония в том, что уже став «кинозвездой» – компания Джона Делореана, выпускавшая это потрясающее купе, из-за ужасных издержек его производства к тому моменту обанкротилась. Кузов можно исполнить и из обычного «кровельного железа», но тогда он быстро рассыплется, помнётся, деформируется, будет страшно тяжёлым, хоть и дешёвым.

 John DeLorean and one of his serial "stainless" DMC 12

Джон ДеЛореан (экс-президент Pontiac и вице-президент General Motors) и его «нержавеющий» DMC 12

Главный враг железа (Fe) — кислород (О2)! О-два содержится везде. В небольших количествах он присутствует даже внутри любой детали из стали или других металлов и сплавов. Соответственно, если есть железо и воздух — через какое-то время появляется коррозийный налёт. Если появляются ещё и водяные пары, тем более вода — процесс ускоряется в сотни, а бывает, и в тысячи раз!

Главное — качество кузовной стали

Друзья! Обратите внимание — с каждым годом автомобили увеличиваются в размерах, расширяются и сложнеют их комплектации, но при этом они становятся всё легче и легче! Интересно, что если бы «голый» кузов какого-нибудь из современных автомобилей, имея одинаковые характеристики по жёсткости и прочности, был бы создан 30-40 лет назад? Он весил бы несколько тонн, а сегодня — каких-то 300-400 кг! Из-за чего? Ведь не из-за пластмассы, так как мы рассматриваем «голый» металлический кузов?

Еще одна интересная закономерность: выводя на рынок новые модели, солидные производители все чаще упоминают об использовании в их конструкции сверхпрочных и даже гиперпрочных сталей с самыми высокими значениями модуля упругости, которые раньше казались фантастическими.

Body steel Peugeot 308 II and RCZ

Слева показан кузов Peugeot 308 II (2013). Справа — кузов автомобиля Peugeot RCZ (2009). Обратите внимание, как увеличилось использование сверхтвердых сталей

«Ларчик открывается просто» — достичь столь высоких характеристик становится возможным благодаря особым технологиям термообработки кузовных элементов и введению в состав сплавов металлов, позволяющих эти элементы «закалить» (этот термин применяю для упрощения понимания). Наиболее распространённая технология — после многоэтапной штамповки деталь подвергается сложной термообработке, с несколькими отпусками и нагревами (в т.ч. «локальными» с помощью ТВЧ). В самом деле — возьмите в руки крыло современного автомобиля: оно будет сложным по форме, с замысловатыми изгибами, тонким и лёгким, и … настолько прочным, что согнуть его руками почти невозможно, а при постукивании костяшками пальцев прослушивается характерный «бооомммм!», указывающий, что эта «железяка» явно «прикалена».

«Обратная сторона медали» – небольшая толщина стали. Если в 60-70-е годы кузовная «жесть» в 1.5-2 мм считалась тонкой, то во втором десятилетии XXI века металл оперения в 0.25-0.5 мм стал обыденностью.

Естественно, что коррозионная стойкость настолько тонких конструкций выходит на первый план, так как теперь от этого напрямую зависит безопасность. К негативным факторам, напрямую влияющим на скорость появления и распространения коррозии — высокой температуре, наличию влаги и солей, камнебойному и пескоструйному воздействию, добавились повышенные требования к качеству, чистоте и структуре кузовной стали. И здесь у Peugeot, Группы PSA и Stellantis имеются традиционно-исторические преимущества над большинством других брендов …

Сталь и Peugeot

Более 200 лет назад, задолго до изобретения автомобиля, семья Пежо занималась обработкой металлов и металлургией, быстро завоевав мировую известность. Peugeot является изобретателем технологии холодной прокатки стали и многих черных и цветных сплавов.

Peugeot factory in terre blanche 1881

Завод по производству стали и металла Peugeot в Терре-Бланш в 1881 году За десять лет до появления первого автомобиля Peugeot.

Компания Peugeot начала производство автомобилей еще в XIX веке, вложив в них весь свой огромный металлургический потенциал, ноу-хау и передовые разработки. Группа PSA и Stellantis — один из немногих автопроизводителей с собственным, весьма внушительным сталелитейным производством, которое снабжает своей продукцией не только других автопроизводителей, но и другие отрасли промышленности.

Производство «чистой стали» и сплавов с минимальным содержанием примесей для кузовного машиностроения стало для PSA своеобразной «визитной карточкой», ярким подтверждением чему – имидж Peugeot и Citroen, как «нержавеющих» автомобилей.

 Peugeot - the inventor of specialty dental alloys

Возможно Вы удивитесь, но … Peugeot в числе изобретателей специальных стоматологических сплавов! Этот набор предназначался для дантистов в 1884 году

«Чистая сталь» – сталь с низким содержанием растворимых примесей и минимальным количеством дефектов, связанных с присутствием оксидов. Наличие в стали таких элементов, как: углерод, фосфор, сера, азот, водород и кислород, может оказывать большое вл ияние на её важнейшие для автомобилестроения свойства:

  • Прочность на разрыв;
  • Способность к пластической деформации без образования трещин при волочении;
  • Вязкость;
  • Свариваемость;
  • Устойчивость к растрескиванию;
  • Коррозионная стойкость;
  • Усталостная прочность.

Это взаимное влияние может оказывать как положительное, так и отрицательное воздействие на свойства стали. Например, углерод и азот повышают прокаливаемость стали, но снижают ее пластичность, фосфор также повышает прокаливаемость, но способствует ее хрупкости, кислород и сера (оксиды и сульфиды) делают сталь устойчивой к истиранию, но отрицательно влияют на вязкость и усталостную прочность. В связи с этим количество и размер включений ограничены для различных областей применения.

  • В листовой стали для штамповочных барабанов максимальное содержание кислорода не должно превышать 30 частей на миллион (p.p.m.), азота — 40 p.p.m., а максимальный размер неметаллических включений — не более 100 микрон;
  • В листовой стали для кузовов автомобилей максимальное содержание кислорода — не более 20 p.p.m.

Есть ещё один важный фактор влияния примесей, содержащихся в кузовной стали – восприимчивость к необходимой химической обработке и дружественность к защитным покрытиям, из которых на первом месте – так называемая «оцинковка».

Профилактика коррозийного налёта

Кузов автомобиля — не только самая дорогая, но и с точки зрения сопромата (сопротивление материалов) — самая ответственная часть автомобиля. Во время движения по обычной дороге (не говоря о бездорожье и ДТП) ему приходится испытывать гигантское количество самых разнообразных деформаций, подвергаться вибрациям и гасить их, рассеивать энергию, и др. и т.п. Поэтому какое угодно утончение, дыра или ослабление любого из его элементов — потенциальный концентратор напряжений и источник проблем. На проржавевшем, «гнилом» кузове появляется дырка или место, по которому он когда-нибудь сломается, переломится, и … хорошо, если это произойдёт где-нибудь «в чистом поле», а не на скоростном ДТП! Дырки и ослабления элементов кузова в первую очередь появляются из-за разрушения металла кислородом, появления ржавчины, а затем – сквозной дыры …

Серия «Элементарная электрохимия» (урок химии в школе):

Li→Rb→K→Ba→Sr→Ca→Na→Mg→Al→Mn→Cr→Zn→Fe→Cd→Co→Ni→Sn→Pb→H→Sb→Bi→Cu→Hg→Ag→Pd→Pt→Au

Найдём в нём Железо (Fe). Теперь смотрите: более активные, чем железо, металлы — расположены слева от него, менее активные — справа.

Если мы покроем лист железа цинком (Zn) или цинкосодержащими веществами (далее просто «Цинк»), то этот слой не даст кислороду проникнуть к железу, окислить его, сделав ржавым. В случае, если слой цинка повреждён, то место повреждения с прямым контактом железа с воздухом неизбежно начнёт окисляться кислородом.

Если слой железа покрыть оловом (Sn) или медью (Cu), которые менее активны, чем Fe, и расположены справа от него — при повреждении слоя активно начнёт окисляться железо — слой олова или меди останется целым, но железо под ним быстро проржавеет «втруху»! Поэтому кузова автомобилей никогда не лудили (т.е. покрывали оловом) и не меднили!

Цинк, как более активный металл, «берёт на себя» всю «химическо-окислительную нагрузку». Если железо покрыто цинком, то при повреждении его слоя, лист будет ржаветь не в глубину, а в ширину! Таким образом слой цинка исключает появление на кузове сквозных дыр. Окисление (ржавление) будет происходить в любом случае! Однако очаг ржавления будет направлен не внутрь детали, а по её поверхности.

The paintwork is damaged, but the metal is intact

Суть «оцинковки»: пусть лакокрасочное покрытие и «вспучилось», но деталь цела и даже нет намёка на «гниль». Это можно легко восстановить!

Пример №1
Взгляните на пороги подержанных японских автомобилей — вроде как всё нормально, но при ближайшем рассмотрении увидим небольшие сквозные дыры. Увы, кузова даже знаменитых «японцев», а вместе с ними, увы, и «корейцев», если вовремя не устранять повреждения их ЛКП – способны сгнивать насквозь за один московский зимний сезон («спасибо» едким антигололёдным реагентам)

Пример №2
Взгляните на кузова самых старых Peugeot и Citroen, которые только сможете найти – на них могут быть круглые «язвы» с облетевшей краской, в середине этих «язв» могут даже угадываться фрагменты коричневого цвета (да, да — это коррозийный налёт), но … на кузове не будет ни одной сквозной дыры! Конечно, если случай совсем запущенный или ремонт производился варварскими методами (нагревание порогов паяльной лампой и вытягивание вмятин за «усики»), то дыры могут иметь место, но для этого автомобилю нужно будет без моек и ремонта ЛКП проездить по московским «коктейлям» несколько лет, что случается только у самых безалаберных владельцев!

Историческая справка: в 1975 году на свет появились два первых в мире автомобиля, получившие полностью оцинкованные кузова — это были Peugeot 604 и Porsche 924. В разработке технологии принял участие немецкий химический концерн BASF. С тех пор все Peugeot и Porsche являются «нержавеющими».

Fragment of advertising brochure Peugeot 604 describing the process of anti-corrosion treatment of the body

Выдержка из брошюры Peugeot 604, описывающая процесс гальванизации

Таким образом, если на поверхности автомобиля с оцинкованным кузовом появилось повреждение «до металла», то через какое-то время в очаге повреждения неизбежно появится ржавчинка. От этого не уйти. Слой цинка даёт Вам намного больше времени на устранение этого повреждения, нежели в случае, если этого слоя нет. Устранить повреждение нужно в любом случае и чем быстрее — тем лучше!

И не слушайте рассказы всяких «гаражных сказочников», что мол на таком-то автомобиле он де с глубокой царапиной проездил 5-10 лет и даже намёка на ржавчину не было … Это — миф! Такой владелец — неряха, грязнуля и чухан: ведь если порежет руку — тут же побежит мазать её зелёнкой или наклеивать пластырь … а автомобиль этого сам сделать не сможет!

Corrosion of the body of a Japanese crossover for 10 years

Внешне аккуратный японский кроссовер солидной марки за семь лет в Москве сгнил почти до дыр! Вина владельца очевидна. Необходимо было позаботиться о том.

Виды защиты автомобильного кузова

Что такое оцинковка на самом деле

Вообще-то говоря, «оцинковка»: термин простонародный, упрощённый и, если рассматривать его в прямом значении – он далёкий от автомобильной реальности, и поэтому неверный! А ведь у этого процесса есть правильное, пусть длинное, но принятое у профессионалов название – фосфатирование с пассивацией и последующим электроосаждением цинкосодержащего грунта методом катафореза.

Покрывая металл тонким слоем фосфата цинка, вы увеличиваете его твердость и защищаете от коррозии.

Пассивация (происходит от слова «пассивность») – образование на поверхности металла тонкой оксидной плёнки, препятствующей образованию коррозии. Толщина оксидной плёнки на поверхности кузовной стали – несколько нанометров (1 нанометр = 10 −9 метра). Фактически, пассивация – это намеренное разрушение наружного слоя металла под действием сложного окислителя с образованием стойких солей и окислов, из которых и состоит защитная плёнка.

Фосфат цинка (Zn3(PO4)2) — это антикоррозионный агент, представляющий собой мелкий порошок белого цвета, обладающий практически нулевой токсичностью, повышающий адгезию лакокрасочного покрытия к металлу кузова и улучшающий защитные свойства лакокрасочного покрытия.

Химический механизм защиты заключается в следующем: под воздействием воды, проникшей через лакокрасочное покрытие, фосфат цинка вступает в реакцию с образованием комплексной кислоты, реагирующей с оксидной пленкой (полученной при пассивации) на ионах железа участков коррозии кузовной стали, в результате чего образуется мощный комплексный ингибитор коррозии.

Для проведения пассивации и фосфатирования предварительно очищенный и полностью обезжиренный кузов погружается в ванну с раствором фосфата цинка в деминерализованной воде с добавлением кислот и катализаторов реакции. Обычно процесс пассивации и фосфатирования занимает от трех до семи минут.

Обычно цвет покрытия либо светло-серый, либо темно-серый. Хром и никель придают зеленоватый оттенок серому цвету корпусной стали.

Электромеханический способ защиты кузова от ржавчины

После фосфатирования вся поверхность кузова в катафорезной ванне покрывается слоем защитной цинксодержащей грунтовки, состоящей из фосфата цинка, полимеров и пигмента. После нанесения этого слоя наносится лакокрасочное покрытие. Используя свой мощный адгезионный потенциал, частицы грунтовки проникают в поверхность фосфатированного металла настолько глубоко и плотно, что четкая граница между металлом и грунтовкой фактически теряется. При оценке состояния лакокрасочного покрытия автомобиля необходимо использовать различные толщиномеры, чтобы компенсировать этот эффект.

After passivation and phosphating, this Citroen C3 I body goes to cataphoresis

После пассивирования и фосфатирования этот кузов Citroen C3 I подвергается катафорезному покрытию цинксодержащим грунтом

Катафорез – процесс переноса (электроосаждения, электрофореза) вещества из раствора электролита под действием электрического тока, когда грунт или краска является анодом («плюсом»), а кузов или его деталь является катодом («минусом»). Катодная защита – так не совсем правильно называют этот процесс в водительском социуме.

Краткий исторический обзор электрофореза в автомобилестроении.

— 1963, первое применение анафорезного праймера на мелких деталях

1967 год — первая экспериментальная линия рисования по телу с помощью анафореза;

Применил первый праймер для катафореза в США в 1974 году;

Выпуск автомобилей Peugeot 604 и 924, кузова которых покрыты фосфатом цинка с помощью катафореза.

Комбинированная защита

  • Полная автоматизация процесса нанесения покрытия, где человек участвует только в качестве наблюдателя/контролера;
  • Короткое время нанесения покрытия — обработка кузова занимает всего 3-5 минут;
  • Высокое качество покрытия — покрываются все внутренние и внешние части кузова, а дефекты покрытия практически полностью исключены;
  • Высокая эффективность и результативность — до 100% неиспользованного грунта или краски, оставшихся в катафорезной ванне, могут быть повторно использованы для покрытия другого тела;
  • Экологичность и безопасность.

В результате свойств защитной грунтовки и катафорезного метода нанесения, она обеспечивает наилучшие характеристики антикоррозионной защиты кузова от внешних воздействий.

Peugeot 504 body paint

Пусть первым в оцинковке и был «604», но славу «нержавеющего» первым завоевал Peugeot 504. На фото — участок окраски «504» в Сошо. 1981

  • Сглаживает и выравнивает мелкие дефекты на поверхности кузова для придания лучшего внешнего вида после покраски;
  • Продлевает срок гарантии на отсутствие проникающей коррозии кузова с 6 до 12 лет;
  • Защищает от внешних ударов твердыми предметами (камни, гравий, древесная стружка и т.д.).
  • Сохраняет толщину грунтовки на острых частях кузова (кромки дверей и капота, фланцы и обода)
  • Высокая проникающая способность и распределяемость, что позволяет качественно обрабатывать детали кузова особо сложных форм
  • Защищает кузова из широкого спектра металлов и их сплавов (сталь, алюминий, дюралюминий, силумин, магниевые и титановые сплавы)
  • Широкий диапазон параметров сушки по времени и температуре.

После нанесения защитной цинксодержащей катафорезной грунтовки кузов подвергается комбинированной сушке потоками стерильного воздуха под воздействием инфракрасных ламп, после чего на его поверхность наносится слой краски (грунтовка), также методом катафореза. Фосфат цинка в этой грунтовке отсутствует. Лакокрасочное покрытие на основе этого материала обеспечит высокую адгезию для декоративных эмалей и лаков.

Вот так и происходит «оцинковка» лучших в плане коррозионной стойкости автомобилей, в число которых входят Peugeot, Citroen и Porsche, ставшие первопроходцами в деле антикоррозионной защиты ещё в далёком 1975-м году.

Modern technology for processing the bodies of Peugeot, Citroen, DS and Opel cars

Современная технология обработки кузовов автомобилей Peugeot, Citroen, DS и Opel

В чём заблуждаются якобы эксперты …

Самое ужасное – ничего не имеющие с реальностью информационные «перлы», сродни плоду больного воображения, регулярно появляются не только у блогеров, но и на страницах весьма уважаемых автомобильных изданий. Если скомпилировать содержание статей, посвящённых «оцинковке» кузовов, то все они сведутся к одной крамольной цитате …

  • Холодное цинкование;
  • Цинкометалл;
  • Гальванический способ нанесения цинка;
  • Горячая оцинковка.»

Само это перечисление уже вызывает большие сомнения в профессионализме, компетенции и уровне знаний авторов! Про «горячую оцинковку», упоминание о которой в автомобильном контексте является полной чушью, мы ещё поговорим в отдельной главе.

Гальваническое цинкование – реальность и выдумки

Якобы «холодное цинкование», «цинкометалл» и «гальванический способ нанесения цинка» являются ничем иным, как тремя видами описания одного и того же процесса – фосфатирования с последующим нанесением на поверхность кузова цинкосодержащего защитного грунта методом электрофореза.

Действительные отличия в видах этого метода касаются лишь нюансов: проводится пассивация или нет, каким способом ведётся фосфатирование — химическим или электрохимическим, каков состав ингредиентов в первичном растворе электролита. Разумеется, в первую очередь, всё зависит от качества, соблюдения технологической культуры. Но всё это – на совести завода-изготовителя автомобиля. Остальное не имеет особых отличий и не зависит от поставщиков технологий и химических веществ.

  • «полная оцинковка», когда цинком покрываются все элементы кузова внутри и снаружи;
  • «частичная оцинковка», когда цинком покрываются лишь наиболее подверженные коррозии и ударно-абразивному воздействию участки кузова, обычно «до пояса».

Дело в том, что фосфатировать и/или покрывать кузов автомобиля цинкосодержащим грунтом «до пояса» или «до крыши» не имеет никакого смысла – кузов в любом случае придётся обработать ВЕСЬ: или полностью, или не делать этого вообще. Технология такова, что кузов в электрофорезных ваннах необходимо постоянно покачивать и переворачивать, а электролит непрерывно перемешивать.

Даже погружать кузов в ванну необходимо в положении, близком к вертикали, сверху вниз и с определённой скоростью. Если кузов в ванну банально «плюхнуть» и в полупогруженном состоянии пронести его через электролит, то, после извлечения и сушки, вся его поверхность будет изобиловать дефектами, грунт ляжет неровно, а толщина слоя получится крайне неравномерной. Устранение брака потребует гигантского количества ручного труда с негативным присутствием «человеческого фактора», и из-за этого — неизбежно огромных финансовых потерь. Технология полной обработки кузова, целиком, с полным погружением его в ванну, абсолютно лишена всех этих неприятностей.

Итак, мы с вами выяснили, что в настоящее время,как и раньше, в мировом автомобилестроении применяется только один метод оцинковки кузова — покрытие его в электрофорезной ванне тонким антикоррозионным слоем цинкосодержащих веществ методом электроосаждения их на поверхность кузова из электролита, где эти вещества содержатся в виде коллоидного раствора.

Настало время развенчать самый чудовищный, но устойчиво циркулирующий в умах автомобильной общественности миф про «горячую оцинковку».

«Горячая оцинковка» – плод больного воображения

Так называемая «горячая оцинковка» в легковом кузовном автомобилестроении не применяется, никогда не применялась ранее и (упаси Бог) никогда не будет применяться в будущем! Выделю особо – «горячая оцинковка» НИКОГДА не применялась и НЕ ПРИМЕНЯЕТСЯ. И вот почему …

Openwork body structure Peugeot 2008 I

Кузов Peugeot 2008 можно сравнить с Эйфелевой башней за его красоту и ажурную конструкцию.

Представьте себе … Красивый, ажурный, лёгкий, почти воздушный, замысловатой и сложной формы кузов, собранный из множества фрагментов из стали с самыми разными характеристиками, только что сваренный на конвейере сверхточными (!) роботами, для оцинковывания опускают в … «ванну с расплавом цинка, температура которого от 500°С до 800°С» — что иногда можно прочитать не только у блогеров, но и на страницах весьма уважаемых автомобильных изданий.

При 500°С прецизионно термообработанные кузовные панели … мгновенно «отпустятся», а сверх- и гиперпрочные стали тут же превратятся в «пластилин»! Это должно быть понятно любому, кто когда-нибудь совал гвоздь в костёр и видел, что после этого с ним происходит … При 500°С ажурный кузов испытает настолько высокие термические перегрузки и деформации, что его, в самом прямом смысле — разорвёт по швам! Даже если его не разорвёт, то скрутит хуже Квазимоды из «Собора парижской Богоматери», и обратно этот скомканный клочок фольги уже будет ничем не расправить!

Снизить температуру? Не получится! Температура плавления Цинка — 420°С.

Сначала оцинковать металл, отштамповать, а затем сварить? Тоже не получится! Наиболее широко применяемая технология сварки кузова — точечная. Две детали плотно соединяются друг с другом, сжимаются в нужном месте «клещами» с электродами, на которые подаётся короткий, но мощный электрический разряд. Происходит локальный нагрев до 1000-1200°С, и сталь в этой точке сваривается.

Следующая точка, ещё точка, ещё … Теперь представьте, что в месте этого локального нагрева до 1000-1200°С (температура плавления стали) появляется цинк со своей «смехотворной» температурой плавления в 420°С. Это неизбежно приведёт к образованию шлака, каверн, прожига, что уже потом, после покраски и эксплуатации, станет мощным очагом коррозии, в т.ч. и межкристаллической, т.е. внутренней, без воздействия извне.

Используя цинк, мы не только никак не защитим кузов, но и создадим большое количество сред, в которых возникнет скрытая и неконтролируемая коррозия. После воздействия вибраций места сварки начнут трескаться и лопаться, и через некоторое время кузов развалится по швам.

Эта проблема успешно решена с помощью современных технологий, в частности, концерна Peugeot-Citroen! Перед соединением поверхностей стальных деталей, покрытых тонким слоем цинка, для последующей точечной сварки на их внутренние стороны, обращенные друг к другу, наносится специальный консервирующий флюс, который предотвращает выгорание цинка и способствует его мгновенному растворению в очаге расплавленной стали без образования шлака или дефектов. Флюс вокруг точки сварки, который не участвовал в реакции, теперь играет роль клея, который после быстрой полимеризации не только герметизирует соединение деталей, защищая точку сварки изнутри, но и способствует дополнительному повышению жесткости конструкции.

Но вернёмся к «горячей оцинковке»

Энергия! Посчитайте — какое чудовищное количество энергии нужно подводить к «ванне с расплавом цинка» ёмкостью более 150 м 3 . К тому же, весь этот объём нужно постоянно держать при температуре минимум 500°С, перманентно добавляя и расплавляя новые гранулы с цинком! А если автомобиль выпускается тиражом 500 000 машин в год?

Это 41 670 автомобилей в месяц, 1389 в сутки и 58 автомобилей в час! Это значит, что нужно опускать в ванну с расплавленным цинком по 1 кузову в минуту (круглые сутки без праздников и выходных!)! … В этом случае рядом с автозаводом должна находиться какая-нибудь атомная или гидроэлектростанция «калибра» Днепрогэса!

Резьба! На любом кузове, каким бы высокотехнологичным он не был — резьбовых отверстий в нём будет всегда много и разных! Самый тонкий слой цинка, которого можно достичь при «горячей оцинковке» — 0.1 мм! Не микроны, а одна десятая миллиметра! Тоньше этим методом слой никак не сделаешь. Если нарезать резьбу до оцинковывания, то после нанесения на её витки слоя в 0.1 мм, даже если она М16, в это отверстие вряд ли можно будет завернуть болт, не говоря уже о резьбах меньшего диаметра. Если нарезать резьбу после оцинковывания, то теряется весь смысл — после того, как метчик выйдет из отверстия, на поверхности витков будет «голый металл», открытый для любой коррозии и ничем не защищённый.

Экология! В данном случае я не о Грете Тунберг, а об экологии реальной. Цинк, после того, как его расплавили, тем более довели его температуру до 500-800°С начинает активно окисляться и вступать в реакцию со всем, «что попадётся под руку», результат — огромное количество неподдающегося дальнейшей переработке вредного шлака, ядовитые газы и испарения … Куда всё это девать? Газы — в атмосферу, а шлак — на улицу? При «скорострельности» 1 кузов в минуту, через год вокруг завода будут возвышаться огромные зловонные терриконы, отравляющие всё вокруг миазмами. «Здесь птицы не поют, деревья не растут» (С) станет ужасной явью.

Горячая оцинковка применяется при изготовлении фонарных столбов, водопроводных труб, изгородей, мостовых элементов и им подобных изделий – там, где не нужна высокая точность, а деталь — корпусная. В автомобильной промышленности этот метод крайне редко (!) применяют для оцинковывания каких-нибудь кронштейнов для грузовиков, их рам, распорок и т.п.

  • Экологичность — почти стопроцентная, т.к. никаких шлаков и вредных выделений не происходит вообще.
  • Энергозатраты — минимальные и требующиеся лишь для поддержания необходимой разности потенциалов на кузове и ванне.
  • Слой цинкосодержащего покрытия — тонкий, около 10 мкм, поэтому даже на самые мелкие кузовные резьбы влияния он не оказывает.
  • Слой очень прочный, так как микрочастички проникают в поверхность кузовной панели на молекулярном (!) уровне.
  • «Процинковывается» полностью всё — вплоть до самых деликатных закоулков и скрытых полостей кузова.
  • Для исключения брака из-за неизбежных пузырей, кузов, находясь в ванной — переворачивается, а электролит постоянно перемешивается.
  • Сушка только что оцинкованного электроосаждением кузова происходит точно также, как сушка после его окрашивания – потоком стерильного воздуха под инфракрасными лампами.
  • Никакого нагрева, а значит и внутренних температурных деформаций, и связанных с ними напряжений, кузов априори испытывать не может.

Оставим на потом и, если хотите, описание новых, передовых, хотя пока и экзотических технологий, которые недавно начали использоваться в производстве автомобилей (включая Peugeot, Citroen и всю продукцию Stellantis), но за которыми будущее: склеивание, ламинирование, плазменное напыление и т. д.

Final inspection of the quality of painting and assembly of the body

Финишную проверку качества окраски и сборки кузова на Peugeot и Citroen проводят нежные женские руки — ласковые, чувствительные и очень нами любимые)))

И в качестве заключения

Если кузов автомобиля оцинкован — это не значит, что он вдруг превратился в кузов из нержавеющей стали!

К слову — за более чем 130 лет истории автомобиля, только один единственный раз серийный (точнее: мелкосерийный) автомобиль имел кузов из нержавеющей стали! Этот автомобиль вы хорошо знаете или хотя бы раз в жизни видели его на экранах — DеLorean DMC12, который снялся в знаменитом фильме «Назад в будущее». Кстати, под капотом этого «огненного» автомобиля находился … 3-литровый бензиновый PRV V6 ZM от Peugeot/Citroen.

Ухаживайте за кузовом своего автомобиля! Мойте его хотя бы раз (а московской зимой не реже двух) в месяц на хорошей автомойке. Если заметили скол или повреждение ЛКП — не надо заниматься словоблудием, а скорее удалите или хотя бы законсервируйте повреждение. Ведь получив порез или рану — мы тут же её лечим или идём в больницу/поликлинику. А автомобиль этого сделать самостоятельно не может. Обработанная рана на нашем теле скоро заживёт без следа, исчезнув даже в воспоминаниях, т.к. человеческий организм наделён чудом регенерации кожного покрова и мышечных тканей. А автомобиль этого лишён. Поэтому помните: автомобиль — это не Ваш раб, а Ваш Друг! Уважайте и любите свой автомобиль — и он ответит Вам тем же!

голоса
Рейтинг статьи
Читайте так же:
Автомобиль летом - советы по подготовке и эксплуатации машины
Ссылка на основную публикацию
Adblock
detector